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Abstract

Introducing intermediate band(s) within the energy gap of the semiconductor
could possibly increase efficiencies of solar cells. Photons with energy less than the
band gap can contribute to the device output by using the intermediate band(s) as a
‘ladder’ to the conduction band. The present analysis shows the maximum efficiency
an ideal solar cell containing one and two intermediate bands can achieve is 63.2%
and 74.4%, respectively.

1 Introduction

The solar cell is a solid state device that converts light energy to electricity in a one step
process that relies on the ideas of quantum mechanics. When light is absorbed in matter,
depending on the material, electrons can excite to higher energy levels where they are able
to move freely. The extreme case is when the electron can completely escape the surface
of the metal after absorbing blue or ultraviolet light. This is known as the photoelectric
effect and was described by Einstein in 1905 [1].

In a semiconductor, which has a band gap roughly ranging between 0.5 eV to 3.0 eV [2],
a electron can be promoted to the conduction band if the absorbed photon has an energy
greater than the band gap. The excited electron will decay very quickly (picoseconds) to
the lowest available energy state in the conduction band due to the abundance of empty
levels. This is called thermalization and happens through collisions with the lattice, giving
up kinetic energy to produce phonons during the decay. Then in a much slower process,
the electron will decay across the band gap to a vacant site in the valence band. A solar cell
will take advantage of this slow process and have some asymmetry built in that pulls the
electrons away to an external circuit before electrons can relax back down to the valence
band. As they are pulled away, the extra energy is a potential difference which allows
electrical work to be done.

One of the limitations of solar cells that can be readily observed is that low energy
photons cannot excite electrons to the conduction band and hence external circuit. Inter-
mediate bands take advantage of the lower energy photons by allowing the electrons to be
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promoted to levels in the normally forbidden energy gap [3]. This is a muli-step or ladder
approach to increase efficiency. It is shown that the maximum efficiency of a solar cell
using one or two intermediate bands is greater than the single junction solar cell. The first
step in this analysis is understanding the source.

2 The Source

The sun’s radiation can be modeled as a black body, which by definition is a perfect ab-
sorber and emitter of light. Its properties are well known and in this section are only
summarised. Specifically, the energy density of a black body is developed and the connec-
tion to its flux is discussed.

Energy density can be derived using the density of states, a, for photons with momen-
tum between p and p + dp in a cavity

ǫphoton = pc

a(p)dp =
V

h3
g4πp2dp

a(ǫ)dǫ =
V

h3c3
g4πǫ2dǫ

and using the mean occupation number.

〈nǫ〉 =
1

eǫ/kBT − 1

Combining the two, noting that the degeneracy g = 2 (polarization) and that the mean
occupation number is multiplied by ǫ to give average energy, shows the energy density in
range dǫ.

u(ǫ)dǫ =
8πǫ2

h3c3

ǫ

eǫ/kBT − 1
dǫ (1)

The total energy density in a system is given by integrating the above equation over the
over the desired range. Particle density can also be found by just combining the mean
occupation number and density of states for photons.

n(ǫ)dǫ =
8πǫ2

h3c3

1

eǫ/kBT − 1
dǫ (2)

2.1 Angular Dependence of Radiation

Only a portion of the sun’s radiation1 is received by the earth and this is determined by the
solid angle subtended by the sun from the earth. This will affect a solar cell’s performance

1radiation refers to flux, energy per unit area per second.

2



Figure 1: Emitting black body where angle dΩ is an element of solid angle around the direction of emission

because it is only receiving a fraction of the sun’s radiation. So, what exactly is the angular
dependence of radiation and how much radiation does the earth receive because of it?

Figure 1 shows the segment, dA, of a black-body surface emitting radiation where dΩ
is an element of solid angle around the direction of emission. A solid angle is defined by
the mathematical equation, [4]

dΩ =
dA

r2
= sinθdθdφ (3)

If assuming planar symmetry, the radiation is resolved along the normal to the surface
n (proportional to cosθ). The angular dependence is determined by integrating over the
angular ranges θ and φ

R
∫ φ2

φ1

∫ θ2

θ1

cosθsinθdθdφ = R

(

sin2θ2 − sin2θ1

2

)

(φ2 − φ1) (4)

where R is the radiation independent of angular ranges. The emitted radiation passing
through a hemisphere is just πR using θ2 = π/2, θ1 = 0, φ2 = 2π, and φ1 = 0. In most
situations, φ will have the full range from 0 to 2π and θ1 will most likely be 0 so that
equation (4) will look like FπR, where F = sin2θ2.

Equation (4) is used to determine the sun’s radiation as seen from earth. If the sun
was directly overhead, a black body element on earth would see the sun at an angle of
θs = sin−1(rsun/des) with rsun being the radius of sun and des being the distance from the
earth’s surface to the sun. The fraction of the sun’s radiation reaching earth would then
just be Fs = (rsun/des)

2 = 2.16× 10−5 using rsun = 695, 990km and des = 149, 591, 493km.
It is important to note that if the black body on earth receives radiation over a hemisphere,
it will receive part of the radiation directly from the sun, 0 < θ < θs, and the rest from the
scattered or re-emitted radiation, θs < θ < π/2, this is shown in figure 2. For the purposes
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Figure 2: Flat plate black body receives radiation from the sun in the angular range 0 < θ < θs. The
plate will also receive ambient (scattered and re-emitted) radiation over the angular range θs < θ < π/2,
this ambient radiation is assumed to behave like a black body as well.

of this paper, the scattered or re-emitted radiation will be referred to as ambient radiation
that behaves just like a black body. If this angle, θs, is effectively increased through optics
or through some other means, the black body is said to receive concentrated sunlight.
When this angle is increased so the black body on earth only receives light from the sun,
θs = π/2, full concentration is achieved.

2.2 Fluxes

It is convenient when calculating efficiencies in solar cells to work with fluxes (per area per
unit time) rather then energy or particle densities (per unit volume). This will become
apparent in the next few sections. From dimensional analysis, one can observe that this can
be achieved by multiplying by a velocity. In a black body cavity, the radiation is isotropic
and moves at a velocity c. The fraction of photons dΩ/4π can be considered going in any
direction to within an element of solid angle dΩ [5].

Now if we consider a hole of area dA and assume the hemisphere penetrates the cavity
at a finite thickness dr, then the area dA subtends a solid angle cosθdA/r2 from the point
of view of the volume r2sinθdθdφdr. The amount of energy reaching this small hole, using
dr = cdt, from the volume is just cuǫcosθsinθdθdφdtdA and the total amount arriving per
unit area per unit time is

∫ θ2

θ1

∫ φ2

φ1

cuǫcosθsinθ
dθdφ

4π
. (5)

This is a very similiar expression to equation (4). If we assume, as before, the limits on
angles 0 < φ < 2π and θ1 = 0, the expression is just

= Fuǫ
c

4
(6)
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with F = sin2θ2. This is the conversion from energy density (per unit volume) to energy
flux (per unit area per unit time). Similiar logic can be used to convert the photon density
to photon flux and nǫ replaces uǫ in equation (6). Photon and energy flux are respectively

Ṅ =
2πF

h3c2

∫ E2

E1

E2

eE/kBT − 1
dE (7)

Ė =
2πF

h3c2

∫ E2

E1

E3

eE/kBT − 1
dE (8)

over the energy range E1 and E2. The energy flux is just power per unit area and for the
purposes of this paper, we will call this power density. Efficiency of a solar cell can be
calculated using the ratio of power density output by the cell to the power density received
by the cell. The total power density from any black body can be calculated by integrating
equation (8) over all energies. This gives the result FσsT

4, where σs is Stefan’s constant.

σs =
2π5k4

B

15h3c2

This shows the power density depends only on the temperature of the black body. At the
surface of earth’s atmosphere, using the reduced Fs, the power density is 1353 W m−2.

3 Radiative Transition Rates

When dealing with an ideal solar cell and its limiting efficiency, only radiative recombina-
tion is considered. This is the first condition of an ideal solar cell. Therefore, electronic
transition rates are described by first order pertubation theory and Fermi’s Golden rule.
Fermi’s rule formally states that the transition probability per unit time is the following [6],

2π

h̄
|〈f |H| i〉|2 δ(E − Ef + Ei) (9)

where the bracket term is the matrix element coupling the inital and final states. The delta
function ensures energy conservation. In order to develop the transition rate, we need to
multiply by the probability that the initial state is occupied fi and by the probability the
final state is unoccupied (1 − ff ). Mathematically this looks like

ri → rf =
2π

h̄
|〈f |H| i〉|2 δ(E − Ef + Ei)fi(1 − ff )

and when the final state starts to partially fill up then there will be some probability that
there will be a transition back to the initial state. Symmetry ensures this is the same
matrix element that governs the transition from initial to final state [6].

rf → ri =
2π

h̄
|〈i |H| f〉|2 δ(E + Ef − Ei)ff(1 − fi)
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These radiative transition rates prove very useful in the solar cell. To illustrate, an im-
portant conclusion can be reached by considering a semiconductor with a valence and
conduction band exposed to light. There are three types of radiation events that can occur
between the two bands:

• A photon can excite an electron from the valence band to the conduction band.

• A photon can stimulate the relaxation of an electron from the conduction band to
the valence band through the emission of another photon.

• An electron can spontaneously emit a photon and relax from the conduction band
to the valence band.

The first two items are closely related because a photon causes either event, distinguished
only by the occupation probabilities of the two levels. Therefore, it is natural to combine
the two into a net absorbtion rv→c − rc→v

rabs =
2π

h̄
|〈c |H| v〉|2 δ(E − Ec + Ev)n · (fv − fc)

where n is the number density of photons with energy E, fv is the probability there is an
electron in valence band (Ev), and fc is the probability there is an electron in the conduction
band (Ec). The probability associated with an electron in the solar cell material is governed
by the Fermi-Dirac distribution function that has the following form

1

e(E−EF )/kBT + 1

where EF essentially is the Fermi energy (the energy at which all the states are filled
at absolute zero). Now here is the second assumption of the ideal solar cell and one
that greatly simplifies solar cell physics in general. When the cell is exposed to light or
some applied bias, both the electrons and holes (vacancy left behind from electron) are
disturbed from their equilibrium. The electron population in the conduction band and
hole population in the valence band rise above their normal equilibrium. This disturbance
causes the electrons and holes to relax in what is called quasi-thermal equilibrium. This
causes the Fermi energy level to split and electrons in the conduction band settle to a
chemical potential (EFn

), while the electrons in the valence band settle to a different
chemical potential (EFp

). They are both assumed to be constant in each band. Using the
quasi-thermal equilibrium condition the two probabilities, fv and fc, are just;

fv =
1

e(Ev−EFp)/kBT + 1
(10)

fc =
1

e(Ec−EFn)/kBT + 1
(11)

Spontaneous emission isn’t caused by a photon so it will just have the form,

rsp =
2π

h̄
|〈c |H| v〉|2 δ(E − Ec + Ev)fc · (1 − fv).
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In a steady-state process, all three processes must balence so rabs = rsp.

n · (fv − fc) = fc · (1 − fv)

Solving this equation for n (Complete derivation in Appendix A) shows that

n =
1

e(E−µ)/kBT − 1

µ = EFn
− EFp

E = Ec − Ev

which is the quasi-equilibrium occupation function for photons and can be used in con-
junction with photon density of states to determine the number of emitted photons from
the cell device.

4 Analysis

The efficiency of the solar cell is the ratio of power output delivered from the cell to the
power output produced by the sun incident on the cell. The power from the sun has already
been shown to be 1353 W m−2 which was calculated using equation (8). The task now lies
to determine the power output delivered from the solar cell.

A circuit delivers a power density that is described by the equation P = J · V , with J
being current density at a certain voltage V . So the task is reduced to finding the current
density at a certain voltage that delivers maximum power. This can be found using what
has been developed so far and assumptions made about the solar cell. The assumptions
are as follows:

1. Both the sun and solar cell behave like a black body that operates at temperatures
Ts and Ta respectively (cell is assumed to be at ambient temperature).

2. Only radiative transitions occur.

3. All photons above energy gap are absorbed.

4. Quasi-Fermi energy levels are constant and µ = qV [7].

5. There is only one electron-hole pair created per photon.

6. Radiation generated by the cell can only escape through front surface.

7. Full concentration of the sun is received.
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First, let us define the function Ṅ(E1, E2, T, µ),

Ṅ(E1, E2, T, µ) =
2π

h3c2

∫ E2

E1

E2

e(E−µ)/kBT − 1
dE (12)

which is very similiar to equation (7). It is a generalized form of the photon flux for a
black body and will be used to determine the current density due to the incoming and out-
going photon fluxes between the energy levels E1 and E2. This might seem strange at first
because current is associated with the flow of electrons. However using the assumptions
above, we can determine the current density through a detailed balance of photons.

We know that all the photons with energy greater then energy gap, Eg, are absorbed
in the cell and will create one electron-hole pair (assumptions 3 and 5). All the photons
with energy less then the energy gap are not absorbed in the cell. Therefore, the absorbed
photon flux in the cell will equal the excited electrons in the conduction band. This
absorbed photon flux is Ṅ(Eg,∞, Ts, 0) over the entire hemisphere (assumption 7), which
was determined in section 2.2.

However, a number of photons will be emitted through the processes described in section
3, and electrons (same number of emitted photons) will recombine with holes in the valence
band. These electrons will not contribute to the current. The emitted photons can be
calculated to be Ṅ(Eg,∞, Ta, µ) over the entire hemisphere (assumption 6). The chemical
potential of radiation, µ, comes from quasi-equilibrium occupation function determined
in section 3 and is equal to qV (assumption 4). Excited electrons will lose extra kinetic
energy through repeated collisions with the lattice producting phonons while they decay
to lower energy states in the conduction band. This will continue to occur until they are
in thermal equilibrium with the lattice temperature, Ta. This is why the emitted photons
are released at the ambient temperature. The net electrons (absorbed photon flux minus
emitted photon flux) will be pulled away to the external cicuit where the potential energy
allows electrical work to be done.

The total current density through the device can be determined by the net electron
flux multiplied by q,

J = q[Ṅ(Eg,∞, Ts, 0) − Ṅ(Eg,∞, Ta, qV )] (13)

The output power density is given by P (V ) = V · J(V ), observing that it is a function
of Eg and V . For each value of Eg there will be some V in the range from 0 to Eg that
will maximize the output power density. Figure 3 shows the efficiency results using the
outline described above. From the figure, the maximum efficiency occurs when there is a
band gap of 1.1 eV at about 41%. This seems to make sense because if the energy gap
in the cell was to large, then a good portion of the photons would not be absorbed and
efficiency would decrease. If the energy gap was too small, then most photons would be
absorbed but a good portion of the their energy would be wasted through thermalization
and phonon generation, efficiency would decrease.
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EnergyGap

0.35

0.25

2.5

0.15

Efficiency

0.4

0.3

3.0

0.2

2.01.51.00.5

Figure 3: Limiting efficiency of single gap solar cell (in eV) at full concentration. Ts = 6000K and
Ta = 300K

5 3-Band Analysis

If some of the low-energy photons could be absorbed (infrared) and used in a solar cell,
the efficiency would increase. One way to do this is to introduce an intermediate band
in between the forbidden band gap to give a total of three bands in the semiconductor.
Figure 4 shows a detailed diagram of what the structure should look like and figure 5
shows an equivalent but general 3-band structure with the possible electronic transitions.
It has the valence band (VB), conduction band (CB), and the new intermediate band (IB).
Transitions can occur between the valence and conduction bands (ACV ), between valence
and intermediate bands (AIV ), and between intermediate and conduction bands (ACI).
We assume that stimulated emission, spontaneous emission, and stimulated absorbtion
can occur in all transitions.

Using similiar arguments as before, we can assume that each level has constant quasi-
Fermi levels, ǫFV , ǫFI , ǫFC [3]. In order to use the same analysis as the 2-band system, the
following assumptions are made:

1. Both the sun and solar cell behave like a black body that operates at temperatures
Ts and Ta respectively (cell is assumed to be temperature of ambient).

2. Only radiative transitions occur between all the bands.

3. All photons are absorbed that have energy greater then the band gap.
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Figure 4: Solar cell with intermediate band.

Figure 5: This is a 3-Band Diagram with the pos-
sible electronic transitions (reverse transitions aren’t
shown but do occur). The VB corresponds to band
1, CB corresponds to band 3, and IB corresponds to
band 2.

4. No high energy photons are used for low energy transitions.

5. Quasi-Fermi energy levels are constant.

6. There is only one electron-hole pair created per photon.

7. Radiation generated by the cell can only escape through front surface.

8. Full concentration of the sun is received.

9. No carriers are extracted from the intermediate band. Electrons are only fed to the
external circuit from the conduction band.

Now we are in position to determine the current density throughout the cell using the same
outline as before

J = q[Ṅ(Eg,∞, Ts, 0) − Ṅ(Eg,∞, Ta, µCV )] +

q[Ṅ(EC , Eg, Ts, 0) − Ṅ(EC , Eg, Ta, µCI)] (14)

Eg = EC − EV

µCV = ǫFC − ǫFV

µCI = ǫFC − ǫFI

µIV = ǫFI − ǫFV

and once again the current is delivered at a voltage that is equal to the Fermi-level splitting
between the conduction and valence band, µCV = qV . The first part of this equation is
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EnergyGap

3.02.752.5

0.6
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Efficiency

0.62

0.58

0.56

Figure 6: Limiting efficiency of 3-band solar cell (in eV) at full concentration. Ts = 6000K and Ta = 300K

the current generated from those electrons excited from the valence to the conduction
band, while the second part is the current generated from those electrons excited from the
intermediate to conduction band. However because there is no current extracted from the
intermediate band, we have to balance the flux and satisfy the equation

Ṅ(EC , Eg, Ts, 0) − Ṅ(EC , Eg, Ta, µCI) = Ṅ(EI , EC , Ts, 0) − Ṅ(EI , EC , Ta, µIV ). (15)

In order to solve the above equation, the relationship between µCI and µIV has to be
determined. This can be seen from figure (4)

qV = µCV = µCI + µIV . (16)

Using the two equations (17) and (18), all the chemical potentials can be solved.
The maximum efficiency can be determined by selecting an energy gap, Eg, and scan

through values of EC that maximize the power. Remember that for each specific set
of energy configurations, the constraint equations have to be solved to find the chemical
potentials. This was done and the code can be found in the appendix. Figure (6) shows the
results with the energy gap (eV) and efficiency. The maximum efficiency of the intermediate
band is around 63.1% and this occurs when Eg = 1.94, EC = 1.23, and EI = 0.71. The
intermediate band cell presents a higher efficiency then the normal single juntion cell.

6 Flux Integral

The flux integral, equation (12), is an important role in solving for the limiting efficiency of
solar cells using the approach outlined in the previous sections. Therefore, some discussion
is appropriate in order to get real results. This integral is part of a class of integrals called
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Bose-Einstein integrals that are seen throughout physics. Therefore much effort has been
taken in studying the properties and solutions. In this case, only solutions are desired.
The general form is the following,

gv(η) =
1

Γ(v + 1)

∫

∞

0

EvdE

eE−η − 1
(17)

and Γ(v) is the gamma function. Now it may be shown that gv(η) (when η < 0) can be
turned into [8–10]

gv(η) =
∞
∑

r=1

erη

rv+1
. (18)

This series can be evaluated by using only a finite number of terms and bounding the
error [5].

gv(η) =
m−1
∑

r=1

erη

rv+1
+ ∆ (19)

∆ =
emη

mv+1[1 − ( m
m+1

)v+1eη]
(20)

In the present analysis, the flux integral has finite limits so this integral expansion is
incomplete. Using a similiar expansion, the integral

Iv(η, ǫ) =
1

Γ(v + 1)

∫

∞

ǫ

EvdE

eE−η − 1
(21)

can be turned into

Iv(η, ǫ) =
∞
∑

r=1

er(η−ǫ)

Γ(v + 1)
(
ǫv

r
+

vǫv−1

r2
+

v(v − 1)ǫv−2

r3
+ . . .) (22)

Noticing that there are finite number of terms it is compactly put into the form

Iv(η, ǫ) =
v
∑

k=0

ǫv−kgk(η − ǫ)

(v − k)!
. (23)

where, gk(η − ǫ) is equation (20). If both limits are finite, as is the case with some of the
integrals evaluated, then this summation can be extented to the following form,

Iv(η, ǫ1, ǫ2) =
2
∑

l

v
∑

k=0

(−1)l+1 ǫv−k
l gk(η − ǫl)

(v − k)!
. (24)

These approximations to the integrals can be implemented in code with minimal difficulty.
For example, to evaluate equation (14) we need to get the integral into a form similiar to
equation (23). This is done with the substitution x = E/kBTa and η = qV/kBTa.

Ṅ(Eg,∞, Ta, qV ) =
2π(kTa)

3

h3c2

∫

∞

E/kTa

x2dx

ex−η − 1
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Figure 7: 4-Band Diagram

It turns into

Ṅ(Eg,∞, Ta, qV ) =
2π(kTa)

3

h3c2
· Γ(3) · I2(qV/kTa, E/kTa) (25)

and now this is in a form that can be utilized by a computer.

7 Finding Chemical Potentials

Before proceding with the analysis of the 4-band solar cell (2 intermediate bands), it is
necessary to discuss the algorithm used to find the chemical potentials. Since the inter-
mediate band is thermally isolated, the flux into the band has to equal the flux out of
the band. This was a constraint equation introduced in the analysis of the 3-band solar
cell. Combined with the other constraint, equation (18), all the chemical potentials can be
found for every band configuration.

In the computer code, equation (18) is substituted into the constraint equation involv-
ing the flux. However, this isn’t your typical equation that can be solved algebraically
since it involves many terms from the summation and exponentials involving the chemical
potentials. Therefore, all the terms are put on one side of the equation so that it becomes
a root finding exercise using one dimensional numerical techniques. Newton, bisection, or
secant methods are all appropriate to use.

8 4-Band Analysis

In the 4-band solar cell, there are two intermediate bands in between the energy gap
instead of one as in the 3-band system. Figure 7 shows the band set up with the electronic
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transitions (reverse transitions do occur but not shown) and for simplicity each band is
labeled with a number. The conduction band is number 4, valence band is number 1,
and the two intermediate bands are 2 and 3. A similiar analysis is used with the same
assumptions [11], but the difference being there are more variables and more equations to
solve.

In the 3-band analysis there were three types of absorbtions that could occur. They
were EI < E < EC , EC < E < Eg, and E > Eg with E being the photon energy. If there
are N-bands, it can be shown that there will be N · (N − 1)/2 absorbtions. Using this,
a 4-band system will have 6 types of absorbtions (shown in figure (4)). With these come
more constraint conditions:

1. The current entering band 2 must equal the current leaving band 2 (J12 = J23 + J24)
and the current entering band 3 must equal the current leaving band 3 (J23 + J13 =
J34). This is due to the fact that no current is extracted from the intermediate levels.

2. The quasi-Fermi level µ13 must equal the sum of the quasi-Fermi levels µ12+µ23. The
quasi-Fermi level µ24 must equal the sum of the quasi-Fermi levels µ23 + µ34. Finally
and as before, the quasi-Fermi level µ14 = qV must equal the sum of the quasi-Fermi
levels µ12 + µ23 + µ34.

The same general approach to find all the chemical potentials (total of 6) is used except
this time a two dimensional numerical root finding algorithm is needed. Newton’s method
is appropriate as it can be extended in multiple dimensions.

8.1 Newton’s Method in One-Dimension

The idea of the method in one-dimension is to find the local tangent line for the function
y = f(x) and use the zero of this line (y(x) = 0) as the next approximation to the zero of
the function [12]. Mathematically the tangent line is

y(x) = f(xi) + fx(xi)(x − xi)

where fx(xi) is the derivative of the function evaluated at the guess xi. Substituting
y(x) = 0 will give the next iteration.

xi+1 = xi −
f(xi)

fx(xi)
(26)

If the derivative cannot be analytically determined (as in our case) it can be done numer-
ically.

fx(xi) =
f(xi + δ) − f(xi)

δ
(27)
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8.2 Newton’s Method in Multi-Dimensions

This is easy to extend in multi-dimensions, x coordinate is replaced by the vector x=
(x1, x2, . . . , xn), the guess xi is replaced by the vector xi = (x1i, x2i, . . . , xni), the function
f is repaced by the vector f = (f1, f2, . . . , fn), and the derivative fx is replaced by ∇ =
( ∂

∂x1

, ∂
∂x2

, . . . , ∂
∂xn

). In two-dimensions, using the coordinates x and y for simplicity, we get
two simultaneous equations

f1(xi, yi) +
∂f1(xi, yi)

∂x
(x − xi) +

∂f1(xi, yi)

∂y
(y − yi) = 0

f2(xi, yi) +
∂f2(xi, yi)

∂x
(x − xi) +

∂f2(xi, yi)

∂y
(y − yi) = 0

and they can be solved using Cramers rule.





∂f1(xi,yi)
∂x

∂f1(xi,yi)
∂y

∂f2(xi,yi)
∂x

∂f2(xi,yi)
∂y



 ·

[

x − xi

y − yi

]

=

[

−f1(xi, yi)
−f2(xi, yi)

]

x − xi =
f2

∂f1

∂y
− f1

∂f2

∂y
∂f1

∂x
· ∂f2

∂y
− ∂f1

∂y
· ∂f2

∂x

(28)

y − yi =
f1

∂f2

∂x
− f2

∂f1

∂x
∂f1

∂x
· ∂f2

∂y
− ∂f1

∂y
· ∂f2

∂x

(29)

xi+1 = xi + (x − xi) (30)

yi+1 = yi + (y − yi) (31)

These equations were implemented into the code to find all the chemical potentials for each
specific energy band configuration.

8.3 Results

The maximum efficiency can be determined by selecting the energy gap, Eg, and scan
through the various energy band configurations that maximize the power. As before, for
each energy band configuration the chemical potentials were determined from Newton’s
method in two dimensions. The maximum efficiency for the two intermediate bands was
determined to be 74.4%. This occurs when the band configuration is Eg = 2.48, E34 = 1.00,
E23 = 0.91, and E12 = 0.57.
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9 Future Work

It was shown that introducing one and two intermediate bands will increase the maximum
efficiency of a single junction solar cell. Now with the general outline, we can try to
extrapolate the absolute maximum efficiency for the N-band approach as N→ ∞. This
will put a ceiling on the approach and a comparison can be made to limiting efficiencies of
other solar designs.

One of the main assumptions in the solar cell device is that only radiative recombina-
tion is present, however no mention was made if this was ever possible. If non-radiative
recombination (Shockley-Read-Hall, multi-step, etc.) is taken into account, it would be
interesting to see how the efficiency would be effected or what kind of recombination would
dominate.

The main goal of calculating theorical efficiencies is to show the potential a particular
design might possess. However, if the design cannot be put into practice then it is only
an idea. In the analysis shown in this paper, no mention is made of how an intermediate
band could be introduced in the semiconductor. The current research aiming to put this
idea into practice involves three approaches [13]; (1) the direct synthesis of a material with
an intermediate band, (2) the so-called highly nanoporous materials approach, and (3)
implementation using quantum dots. It would be extremely beneficial to determine which
one of these methods (or any) present the most promise by determining a ‘real’ efficiency
for each one.
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Appendix A

Derivation of Quasi-Equilibrium Occupation Function for Photons

n =
fc(1 − fv)

fv − fc

fc(1 − fc) =
eEv−EFp/kBT

(eEc−EFn/kBT + 1)(eEv−EFp/kBT + 1)

fv − fc =
eEc−EFn/kBT − eEv−EFp/kBT

(eEc−EFn/kBT + 1)(eEv−EFp/kBT + 1)

fc(1 − fv)

fv − fc
=

eEv−EFp/kBT

eEc−EFn/kBT − eEv−EFp/kBT

=
1

eE−µ/kBT − 1
E = Ec − Ev

µ = EFn
− EFp
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Appendix B

Programs for calculating maximum efficiency for 3 and 4 band solar cells (in ANSI C)
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